人群顺序注释可能是一种有效且具有成本效益的方式,用于构建用于序列标签的大型数据集。不同于标记独立实例,对于人群顺序注释,标签序列的质量取决于注释者在捕获序列中每个令牌的内部依赖性方面的专业知识水平。在本文中,我们提出了与人群(SA-SLC)进行序列标记的序列注释。首先,开发了有条件的概率模型,以共同模拟顺序数据和注释者的专业知识,其中引入分类分布以估计每个注释者在捕获局部和非本地标签依赖性以进行顺序注释时的可靠性。为了加速所提出模型的边缘化,提出了有效的标签序列推理(VLSE)方法,以从人群顺序注释中得出有效的地面真相标签序列。 VLSE从令牌级别中得出了可能的地面真相标签,并在标签序列解码的正向推断中进一步介绍了李子标签。 VLSE减少了候选标签序列的数量,并提高了可能的地面真实标签序列的质量。自然语言处理的几个序列标记任务的实验结果显示了所提出的模型的有效性。
translated by 谷歌翻译
局部结构化输出学习的现有歧义策略不能很好地概括地解决有些候选人可能是假阳性或与地面真相标签相似的问题。在本文中,我们提出了针对部分结构化输出学习(WD-PSL)的新型弱歧义。首先,分段较大的边距公式被推广到部分结构化输出学习,该学习有效地避免处理大量的复杂结构候选结构化输出。其次,在拟议的弱歧义策略中,每个候选标签都具有一个置信值,表明其真实标签的可能性是多大的,该标签旨在减少学习过程中错误地面真相标签分配的负面影响。然后配制了两个大边缘,以结合两种类型的约束,这是候选人和非候选者之间的歧义,以及候选人的弱歧义。在交替优化的框架中,开发了一种新的2N-SLACK变量切割平面算法,以加速每种优化的迭代。自然语言处理的几个序列标记任务的实验结果显示了所提出的模型的有效性。
translated by 谷歌翻译
现有的部分序列标记模型主要集中在最大边缘框架上,该框架未能提供对预测的不确定性估计。此外,这些模型采用的独特地面真理歧义策略可能包括用于参数学习的错误标签信息。在本文中,我们提出了部分序列标签(SGPPSL)的结构化高斯过程,该过程编码了预测中的不确定性,并且不需要额外的努力来选择模型选择和超参数学习。该模型采用因子式近似,将线性链图结构划分为一组,从而保留了基本的马尔可夫随机场结构,并有效地避免处理由部分注释数据生成的大量候选输出序列。然后在模型中引入了置信度度量,以解决候选标签的不同贡献,这使得能够在参数学习中使用地面真相标签信息。基于所提出模型的变异下限的派生下限,在交替优化的框架中估计了变分参数和置信度度量。此外,提出了加权viterbi算法将置信度度量纳入序列预测,该预测考虑了训练数据中的多个注释,从而考虑了标签歧义,从而有助于提高性能。 SGPPSL在几个序列标记任务上进行了评估,实验结果显示了所提出的模型的有效性。
translated by 谷歌翻译
协作过滤(CF)是推荐系统中广泛搜索的问题。线性自动编码器是CF的一种完善的方法,它通过编码用户项目交互来估计项目项目关系。尽管线性自动编码器的性能出色,但由于项目数量不断增长而导致的计算和存储成本迅速增加,限制了它们在大规模的现实情况下的可及性。最近,基于图的方法在具有高扩展性的CF上取得了成功,并已证明在用户项目交互模型中具有线性自动编码器的共同点。在此激励的情况下,我们提出了通过Item-Item图分区(ERGP)提出的有效且可扩展的建议,旨在解决线性自动编码器的局限性。特别是,提出了递归图形分区策略,以确保将项目集分为有限大小的几个分区。线性自动编码器在分区中编码用户项目交互,同时保留整个项目集中的全局信息。这允许ERGP保证项目数量增加时具有高效率和高可扩展性。在3个公共数据集和3个开放基准数据集上进行的实验证明了ERGP的有效性,ERGP的效率优于较低的培训时间和存储成本的最先进模型。
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
Efficient and robust control using spiking neural networks (SNNs) is still an open problem. Whilst behaviour of biological agents is produced through sparse and irregular spiking patterns, which provide both robust and efficient control, the activity patterns in most artificial spiking neural networks used for control are dense and regular -- resulting in potentially less efficient codes. Additionally, for most existing control solutions network training or optimization is necessary, even for fully identified systems, complicating their implementation in on-chip low-power solutions. The neuroscience theory of Spike Coding Networks (SCNs) offers a fully analytical solution for implementing dynamical systems in recurrent spiking neural networks -- while maintaining irregular, sparse, and robust spiking activity -- but it's not clear how to directly apply it to control problems. Here, we extend SCN theory by incorporating closed-form optimal estimation and control. The resulting networks work as a spiking equivalent of a linear-quadratic-Gaussian controller. We demonstrate robust spiking control of simulated spring-mass-damper and cart-pole systems, in the face of several perturbations, including input- and system-noise, system disturbances, and neural silencing. As our approach does not need learning or optimization, it offers opportunities for deploying fast and efficient task-specific on-chip spiking controllers with biologically realistic activity.
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
SchNetPack is a versatile neural networks toolbox that addresses both the requirements of method development and application of atomistic machine learning. Version 2.0 comes with an improved data pipeline, modules for equivariant neural networks as well as a PyTorch implementation of molecular dynamics. An optional integration with PyTorch Lightning and the Hydra configuration framework powers a flexible command-line interface. This makes SchNetPack 2.0 easily extendable with custom code and ready for complex training task such as generation of 3d molecular structures.
translated by 谷歌翻译
Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
translated by 谷歌翻译
The NASA Astrophysics Data System (ADS) is an essential tool for researchers that allows them to explore the astronomy and astrophysics scientific literature, but it has yet to exploit recent advances in natural language processing. At ADASS 2021, we introduced astroBERT, a machine learning language model tailored to the text used in astronomy papers in ADS. In this work we: - announce the first public release of the astroBERT language model; - show how astroBERT improves over existing public language models on astrophysics specific tasks; - and detail how ADS plans to harness the unique structure of scientific papers, the citation graph and citation context, to further improve astroBERT.
translated by 谷歌翻译